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respectively. It is seen that the thermal wave velocity and damping in a zinc crystal 
depend weakly on the propagation direction. 

Thus, a characteristic singularity of acceleration wave propagation in an anisotropic 

medium is the deviation of the wave tubes from the normal vector. For ‘G == 0 a second 
quasi-longitudinal wave appears which damps out more rapidly than the first. The re- 
laxation time ‘c turns out to exert substantial influence on the nature of quasi-longitu- 
dinal and quasi-transverse wave propagation. 
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The general uncoupled dynamical problem of thermoelasticity for a half-space 
under the condition of a thermal impact with a finite rate of change in tempera- 
ture on its boundary is solved by the method of principal (fundamental) functions 
within the framework of a generalized theory of heat conduction. 

An elastic steel half-space is analyzed as an illustration. The problem on ther- 
mal stresses originating in an elastic half-space due to thermal impact produced 
by a jump change in temperature on the boundary was first analyzed in [l]. 
Since the temperature change on the boundary occurs at a finite rate, it is gene- 
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rally impossible to realize the thermal impact considered in [l] physically. The 
dynamic effects in an elastic half-space under a thermal impact with finite rate 

of change in the temperature on the boundary have been studied in [2]. For high 
rates of change of the heat flux we obtain a generalized wave equation of heat 
conduction [3] taking into account the finite velocity of heat propagation. Hence, 

the solution of the ordinary parabolic heat conduction equation used in [l. 21 
does not correspond to the true temperature field. The problemsof fl, 21 have 

been examined in [4, 51, respectively, within the framework of a generalized 

theory of heat conduction. 

1, Formulation of the problem, Let an elastic half-space z > 0, as well 
as the medium in the domain z < 0 be initially at the temperature t, = 0, and then 
let the temperature of the medium adjoining the surface of the half-space z = 0 grow 

linearly from t, == 0 and reach the finite value oO within a small, but nonzero, time 

interval za_ For r > 0 convective heat exchange according to Newton law occurs between 
the surface and the medium. 

To determine the temperature field in this case it is required to find a bounded, suffi- 

ciently smooth solution of the problem 

1 
- g+: g=g, t(r=O=O, $JrxO =o W,2 

[$-h(l-+rr+-) (t-~,)]Ir=o=O, liit(t,z)=O 
z-+co 

(1.1) 

Here $_ (s) is an asymmetric unit Heaviside function [6]. If it is now considered that 

the half-space was initially stress-free and that there are not stresses on its surface z = 0 
during heating, then the problem [2] 

ITPa, 1 !a232 8% 
--- 

822 c2 l32= 
-=apr a = *rch 

(& (r, z) ITSO = 0, g lTEO = 0, 6, lz=o = 0, QZ L=m = O 

(1.2) 

must be solved to determine the stresses. Here z,. is the relaxation time of the thermal 
process, w, is as yet a large, but finite velocity of heat propagation, ?L is the coefficient 
of heat conduction, c is the specific heat of the substance, y is the density of the sub- 
stance, h is the relative coefficient of heat exchange, a, is the coefficient of linear 

expansion of the material, a is the speed of sound, and t-1 is a Lame constant. 

2. Mixed problem for the wave aquation. Let us consider the problem 
of finding a sufficiently smooth solution bounded at infinity for the problem 

(2.1) 
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lim u (z, z) = 0 
Z-+rn 

in the domain 

~+=c(s,r); O<Z<% 0 <r $ T(I’< x)) 3 [0, .x) x [O, T 

Definitions. (1 ). We call the function K (.t, z, g) satisfying the equation 
L [u] = () and the conditions aK 

Klz=o = 0, az i= 
I 0 

= &, B[Klj,=, = 0 

the Cauchy function of the mixed problem (2.1). 

( 2). We call the function w (‘6, S, Z) satisfying the equation I, [ u] --_ (1, zero 
initial conditions, and the boundary condition 

B [WI,=0 = 6, 

the Green’s function of the mixed problem (2.1). 
( 3). We call the function E (z, g, 7, s) satisfying the equation 

L [El = 6 (2 - E, z - s) = 6 (2 - g) @ 6 (t - s) = 6E @ 6, 

zero initial and boundary conditions the fundamental function of the mixed problem 

(2.1). Here 6, denotes the Dirac measure concentrated at the point a and @ is the tenser 

product of the generalized functions. 

Following [7], it can be verified that the functions K, W and E are 

K (t, i, 6) := b,a[(I, (r, ) z -- 5 I) - 

cD(r, 2 + E) - Zf exp (- h,y)$ (D(T -l&y, 2 -+ c+ Y) @I 

0 

E (z, E; T, s) = 1 O , ‘G\(s 

\b;%(“G-4; z, E), T>S 

k1;& hl = ah, p1 = Pmlahrr, (r, (T, z) = bi2G (7, z). 

G (z, Z) = + b, exp (- k,r) To (h 1/r” - h”z’) J_ (z - b) 

where G (.t, z) is a fundamental solution of the Cauchy problem for the equation 
L [u] = 0. Compliance with the complement condition 

h, + PIP + I’%?p” + Up # 0 

p = p. + ip,, p. > 0, - m < PI < + 00 

plays an essential part here. 

Theorem. If the complement condition is satisfied, then the solution of the mixed 
problem (2.1) is determined by the formula 
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Proof. Let us rewrite (2.2) as follows: 
500 t I 

u (z, z) = - 2h 
\I 

~x~(-~~~)~~(~ -s _ Ply. 2 + ~)~(~~~~~S~ 
0 0 

700 

SU 
dD(z’--8, /z-s])- (s, (z - .s, z + E) - 2 5 exp (- h,y) x 

0; 0 
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El) - CD (z, 2 + Q-2 f exp (- W +! cf, (z -- Pl.y, 5 4- E + ?&Qj X 
0 

9.2 (E) ag + 5 ( bo2 k + bl”) p (“7 1 z - E 1) - a) (t, z + 5) - 
0 

k*+(T)+ E **cf(r, z) + K* [(PB(Z) + -+I b)] + $'F1(") 

The validity of (2.2) becomes evident if we use the properties of the functions W, K 
and E, theorems on the continuity and differentiability of convolutions [S] taking into 

Corollaries. ( 1 ). Formula (2.2) defines: 
( a) The solution of the mixed problem (2.1) for a boundary condition of the third 

kindfora =i, p =I; 
(b) The solution of the mixed problem (2.1) for a boundary condition of the se- 

cond kind for a = 0, h = - 1 ; 
( c) The solution of the mixed problem (2.1) for a boundary condition of the first 

kindforh-+oo, p-too,cz =l. 
( 2 ’ ). Formula (2.2) defines the solution of the mixed problem (2.1) for a pure wave 

equation when 6, = 0 , and for the parabolic equation obtained from (2.1) for b. = 0 
when PI = 0 and b, -+ 0 . This latter solution has the form 

7cn 

u~=IzSS (z+y)exp(--hly)P,(z--s,z+y)II,(s)dyds+ (2.3) 
00 

rem 

Q ~*,(r-8,12--5,~-~~~~-s,z+~~+~~~+~+~~ x 
00 0 

exp(--h,y)F,(-c-ss,z-i_~+y)dyff(s,E;)dSds+ s:[Qa(r+ - 
0 

E,)-Ww+E)+~(: -+ E + y) exp(- h,y)F,(z,z,+ E + Y)]wPl(W5 

@~=~i~@(-C,Z)=~ 
b1%2 

I-- exp(--7i;;-) 
0 2bl Jfnt 

3, The ttmpsrrtuto field. Assuming f = ‘pr == ‘p2 = 0 in (2.2) 

9 (s) = (1 + a, &) cp (s) = 2 (1 + q A) [sJ_ (4 -(f - ~0) J_ s -- %,)I 
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and replacing u by t, we obtain after elementary manipUlatiOII.5 

(3.1) t (r, 2) = aO;Oe(;; $;;;;z) [@I (r, 2) J_ (z - b&z) - 

CD1 (z - z,, z) J_ (” - bo - boz)l + aoul~~;;le~~;O;‘boz) X 

[@a (r, z) J_ (z - b,z) - @)z (z - zo,z) J_ (r - 50 - boz)l + 

klboh 2 [m3(r,z) J_(z - boz) - %(T_- ~0, z) J_ (r - To - zbo)l= 

Fz (z, z) J_ (z - b,z) - Fs (t - To, z) J- (T - To - boz) - 
(I - TySo) [ Fs (z, z) J_ (.t - boz)l 

Here 1 - ad 
@r (r, z) = z - b,z - 7 + * exp [ - d.(f - b,z)] 

m)z (z, z). = z (z - b,z) + .“G - (2bo + p1) z - (y;;I~~;z 
hl + klh 

+ 

exp[--d(~ -h041[ h:zLfiJ + 
2 (bo + PI) ’ 

(h + klbo)2 I 
Tl 211 

@,,(z,z)= \\ (Z+Y)exP~-h,y--k,(T-S-~~~)l{[l--alkl- 
0 0 

2al(r - s - Pw) II (kl v (z - s - ply)2 - bo2 (z + Y)~) 

(T -s - ply)2 - bo2 (z + yJ2 1 ~(t-s-flply)“-bo2(z+y)2 

,_ 

km (z - s - Ply) 

(z - s - ply)2 - ho2 (z + Y)~ ’ 

IO (k, l/(z - S - PIU)” - bo2 (z + Y)“)} sdy ds . 

CQ = p-laTl, d = (b, + pp (h, + k&o), hl = ah PI = a& 

71 = T. - bOZ, v1 = (b,, + pp (z - boz -- s) 

The function ‘t (z, t) defined by (3.1) for a = p = j describes the desired tempe- 

rature field in the elastic half-space z > 0 . 
If the temperature or heat flux is specified on the boundary of the elastic half-space, 

then the temperature field has the form (3. l), where the functions 

F3 (z, z) = :I? F, (z, z) Iv+ = % [ (z - b,z) exp (- krb,z) + 

h-KC 

F, (b, z) = lim F2 (z, z) Ihxml = 2 x 
u -0 

71 

5 s exp (- kl (z - s)) IO (k, 1/(~ - s)~ - bo2z2) ds 

0 

must, respectively, replace F, (t, 2) . 
The case of a jump change in the’temperature on the boundary of an elastic half-space 

can be obtained from (3.1) with r. --, 0. Thus, (3.1) includes all the boundary condi- 
tions occurring most frequently in practice. kt us note that for b, -+ 0 we obtain the 
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corresponding parabolic (usual) temperature fields, and for 6, = 0 the pure wave tem- 
perature fields satisfying conditions specified on the boundary. 

4. The Btrau field, In(2.2) let us set 

cp1=(Fs==$=O, a=l, b,s=+, b;z=o, ~(S,;)=-a?yL, zL=Gz 

Then letting h + CC, fi --, DO, we obtain that the stress field in an elastic half-space 

is described by the functions (all the shear stresses equal zero) 

Here 
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The desired stress field in the half-space has the structure (3.1) for a = (3 = 1, i. e, 

02 = (I - TP) [& (C z) J_ (r - +) + & (f, z) J_ (5 - b)] (4.2) 

and analogously for a,and oY. 
Thus, the stress field in an elastic half-space z > 0 is obtained by the superposition 

of four kinds of waves: a heat wave with velocity bO = l/w,., a sound wave with velo- 

city c , and the same waves but retarded by -co. In contrast to the parabolic case, the 

stress field is hence continuous. 
Let us consider in greater detail the case when a thermal impact with a finite rate of 

change of the temperature is realized on the boundary of an elastic half-space. In this 
case the wave function F5 is 

(4.3) 

Substituting (4.3) into (4. l), we obtain after evident manipulations that the stresses in 

the elastic half-space are described by the functions 

62 = s (I - PO) {J- ( ~-~)[exp(--((i--))--]3- (444) 

J_ (.t - b,z) [exp (- k,b,z) - exp (- hhz - k (f - hz))l i- 

The quantity t is determined by (3, l), where F, is repalced by Fs (z, z), and all the 
shear stresses are zero. 

The following corollaries can be obtained from (4.4). 

( 1). If the temperature field is a pure wave one (b, = 0), then 

i.e. the stress field is linear in both time and the space variable. 

( 2). If a jump thermal impact is realized on the boundary of the ealstic half- 
space, i. e. r,, -, 0, then 

(4.5) 
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( 3). If the velocities of the thermal and elastic wave motions agree (b,, = 1 /Cl, 

then 

( 4 ) . If the temperature field is a pure wave field and the velocities of the ther- 
mal and elastic waves agree (0, = 0, b,) .:= 1 / c), then the stress field is linear in 

the space variable 
5, = Yj- 1 %z J_ 

I ( 
T-ru-~) -J_ (t-+,] 

and exists during the time T E (z / C, s ; c + T,,). In the case of a thermal impact 

(T,, --+ 0) , the stress CT, acts at a concentrated time (instantaneously) 

o, = - 1’2c(Laozb (z - z i c) 

( 5). For &, -+ 0 we obtain the case of the parabolic temperature field consid- 

ered in [ 21 from (4.4). 
If the heat flux on the boundary of an elastic half-space varies linearly, then the stress 

:s Es 1, r3 

\ i exp (- ks) IO (4) dsdE/ -t J_ (f - boz) [[ 1 exP (- b) X 
0 hJY, z b& 

7. El 

Io (4) ds@ - 1 \ exp (- ks) Io (4) d&l 1 

z b,t 

CT - t CT - z cc -f- z 4.&klJ&2-bo2~2, r2z--, TV-----_ 2,=- 
cbo- 1 cbo t_ 1 cbo + 1 

&, = c-1 (CT - z + E), g, = c-1 (CT - z - Q, g3 = z+c-‘(z-g) 

Evidently corrollaries analogous to those obtained from (4.4) can be obtained from 

(4.6). 
Graphs of the dependence of the stress & = ~-1 oz (A = bl-2a a,) on the time It in 

Fig. 1 
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the section F, = i (E = boz) for different heating times v. have been constructed for a 

steel half-space by means of (4.4). (4.5). 
It is seen from Fig. 1 that the maximum stress diminishes rapidly as ‘60 increases, and 

for z. = 2 this maximum is around 43% of its value at ~~ = 0 (instantaneous heating). 

Thus, the maximum dynamic stress is reduced 57% for a 2sec heating duration. This 

indicates that taking account of the finite velocity of heat propagation, the rise in stress 

due to dynamic effects generally has no practical value. 
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The boundary value problem for the stress rates and rates of change fields in the 

quasi-static motion of a volume V of an elastic-plastic medium [1] consists of 

finding the pairs oij’, Eij’ related by the governing equations of an appropriate 

model; here the cij’ should be statically admissible, i.e. should satisfy theequa- 
tions and boundary conditions 

5&=-xX;‘, * 
"ijnjlSp T Pi (0.1) 

and ~ij’ should be kinematically admissible. i.e. 2e,j’ = vi j + uj i , where 

‘i IS,,, z ‘i, (0.2) 

Here S, and S, are nonintersecting parts of the boundary of the volume V, Xi’, 
pi’, uio’ are specified functions. The question of the existence of a solution of 
this problem reduces to the question of the functional 


